TI2001

TI2001 OPERATIONAL RESEARCH I
Credits: 3 Course Coordinator:
Contact hours:

 

Three hour class session each week Instructor(s): AC, LG
Textbook(s) and other supplemental materials
  1. Hillier, F.S., & G.J. Lieberman, 1991, Introduction to Mathematical Programming, McGraw-Hill Publishing Co
  2. Taha, H.A., 1997, Operations Research: An Introduction, Prentice Hall International
  3. Bazara, M.S., & J.J. Jarvis, 1990, Linear Programming and Network Flows, John Wiley & Son
  4. Ravindran, A., & D.T. Philip, & J.J. Solberg, 1987, Operations Research, John Wiley and Sons
Course information Pengantar penelitian operasional; Prinsip optimisasi dan posisi pencarian solusi secara analitis dalam proses pemecahan masalah; Programa linier dan teknik pencarian solusi grafis dan simpleks; Teori dualitas dan analisis sensitivitas; algoritma simpleks dalam bentuk matriks; metode simpleks yang diperbaiki; algoritma untuk masalah dengan variabel yang dibatasi; algoritma dekomposisi; masalah transportasi dan transhipment; masalah penugasan; pemrograman sasaran dan programa bilangan bulat
This course is dealing with introduction to operational research; principle of optimization and the role of analytical solution for problem solving; linear programming and methods for finding solution; duality theory and sensitivity analysis; matrix form simplex method; improved simplex method; algorithm for problem with restricted variable; decomposition algorithm; transportation problem; transhipment problem; and assignment problem; goal programming and integer programming
Pre-requisite
Co-requisite

  • MA2021 Matrices and Vector Spaces
Required Course
Learning outcomes Mahasiswa mampu menerjemahkan permasalahan berdimensi linier dalam konteks disiplin teknik industri ke dalam model matematis dan kemudian mampu mencari solusi optimalnya dengan menggunakan teknik-teknik programa linier
To develop an understanding of problems in linear dimension in the context of Industrial Engineering into a mathematical model and then be able to find optimal solution by using linear programming method
Student Outcomes a b C d e f g h i j k
R R R R

 

Lecture/Lab Topics Covered

Week Topics
1 Introduction to Operations Research
2 Linear Programming and Graphical Solution
3 Principles of Simplex Method
4 Simplex Method in Tabular Form
5 Revised Simplex Method
6 Duality Theory
7 Sensitivity Analysis
8 Midterm
9 Parametric Programming
10 Algorithm for Bounded Variables
11 Transportation Problem
12 Assignment Problem
13 Goal Programming
14-15 Integer Programming